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Abstract. The effect of an electrostatic energy (in the geometrical capacitance approach) on a persistent
current is considered. It is shown that at high temperatures the current amplitude shows periodic dips as
a function of the potential difference between a ring and a reservoir. These dips correspond to a lift of the
Coulomb blockade. In a minimum of a dips a current is periodic in a magnetic flux with a period Φ0/2 at
any temperatures.

PACS. 72.10.-d Theory of electronic transport; scattering mechanisms – 73.20.Dx Electron states
in low-dimensional structures (superlattices, quantum well structures and multilayers)

1 Introduction

Mesoscopic physics [1] studies the properties of systems
which manifest quantum effects beyond the atomic realm.
At low temperatures the inelastic mean free path (or phase
breaking length) Lϕ exceeds the size of a sample L, there-
fore thermodynamic [2] as well as kinetic [3] properties
of such systems are sensitive to the change of an electron
wave function phase. This allows, in particular, the study
of the Aharonov-Bohm (AB) effect [4] in solids.

As was shown in references [5,6], the free energy F of
doubly connected systems containing an AB flux Φ is peri-
odic in Φ with a period of Φ0 = h/e. The derivative of the
free energy over the magnetic flux determines an equilib-
rium persistent current I = −∂F/∂Φ which exists in nor-
mal (nonsuperconducting) samples at low temperatures.
The existence of such a current (or a magnetic moment)
was predicted in reference [7] for a thin-walled ballistic
cylinder and in reference [8] for a one-dimensional metal-
lic ring with disorder. The persistent current was observed
experimentally in the ensemble of many mesoscopic rings
[9] as well as in single rings in diffusive [10] and ballistic
[11]regimes. It should be noted that the current amplitude,
measured in a ballistic low-channel ring which was formed
in the AlxGa1−xAs/GaAs semiconductor heterostructure
[11] is in good agreement with the prediction of a theory
based on a model of noninteracting spinless particles [12].

The problem of persistent currents has facilitated
the study of some fundamental problems of statistical
physics (in particular of the role of statistical averaging
[13,14]). If the ring is connected to an electron reser-
voir, which fixes the chemical potential of electrons in
a ring (µ = const.); then averaging within the frame-
work of the grand canonical distribution is suitable. At
the same time for an isolated ring with the fixed number

of particles (Ne = const.) the canonical distribution
should be applied. The various nature of averaging affects
the current in a single ring as well as the current aver-
aged over an ensemble of macroscopically identical rings.
For an isolated ring [14,15] the crossover temperature is
two times higher than the one for a ring coupled to an
electron reservoir [12,16]. The ensemble averaged current
is exponentially small in the case of the grand canonical
ensemble [12,17–19] and has a finite amplitude for the
canonical ensemble [12,20–27].

It should be noted that the temperature affects upon
current in a twofold way [12]. Firstly, at T > 0 thermal
excitations, such as phonons, are present and an inter-
action with them destroys a current coherent state. Sec-
ondly, with increasing temperature, the occupation of var-
ious quantum levels is changed, which does not destroy a
coherent state, but does result in a reduction of current
magnitude [7,12,16]. Below we are limited to the tem-
perature range where we can neglect inelastic processes:
Lϕ(T )� L.

In a open system (a ring is connected to a reservoir)
the charge transfer from one region into another region is
important. For mesoscopic systems the typical capacitance
C of the system can be very small; therefore the Coulomb
interaction between the electrons affects considerably the
charge transfer. At low temperatures the charging energy
EC = e2/(2C) associated with the transfer of the elemen-
tary charge e can significantly exceed the temperature of
the system T and therefore strongly suppress the charge
transfer (the Coulomb blockade) [28–30]. As a result the
mesoscopic system, though coupled to a reservoir, should
be considered as isolated, i.e. within the framework of the
canonical distribution. At the same time, at some values
of the potential Vg of a mesoscopic sample the charging
energy is degenerate and the Coulomb blockade is lifted
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Fig. 1. One-dimensional ring threaded by a magnetic flux Φ
and weakly connected to an electron reservoir with the chem-
ical potential µ and the temperature T . Vg and C are the po-
tential difference and the geometrical capacitance between a
ring and a reservoir, respectively.

[31]. This results, for instance, in series of sharp peaks in
the conductance of a system as a function of Vg.

In view of the persistent current problem the effect
of Coulomb blockade on the coherent charge transfer at
T = 0 was considered in references [32–35].

The purpose of the present paper is to consider the
persistent current in a one-dimensional ballistic ring near
points of a degeneracy of the charging energy. In such a
case the persistent current is periodic in Φ with a period
Φ0/2. Besides, at high temperatures the current amplitude
is exponentially small compared to the one in the Coulomb
blockade regime. Thus, at high temperatures the depen-
dence of a current amplitude on Vg consists of a series
of Coulomb dips, which correspond to a degeneracy of a
charging energy.

2 Formulation of the problem and basic
equations

We consider a one-dimensional ballistic ring coupled to
an electron reservoir by a tunnel junction (Fig. 1). We
assume that the transparency of a tunnel barrier (de-
noted by a cross in Fig. 1) is small and the reservoir does
not influence the electron spectrum in a ring but both
the energy exchange and the exchange of particles with
the reservoir are allowed. However, at low temperatures
in the general case the particles exchange is suppressed
by the Coulomb blockade.

In the case of a small capacitance C (see Fig. 1) it is
necessary to take into account the charging energy

∆E = EC(Ne −N)2, (1)

where EC = e2/(2C); Ne is the number of electrons in
a ring; N = CVg/e is a parameter proportional to the
potential difference between the ring and the reservoir Vg
and characterizing the effective charge of a positive back-
ground in a ring.

The change of the number of electrons in a ring ∆Ne =
±1 increases the energy of the system by EC . Therefore
at EC � T the number of electrons in a ring is fixed:
Ne = const. At the same time at half-integer values of N
the charging energy (1) is degenerate in Ne [31]. In this

case the exchange of particles between the ring and the
reservoir is allowed.

It should be noted, when the charging energy is degen-
erate an effect similar to the Kondo-effect [36] leads to a
significant increasing of the barrier transparency [37]. This
leads, generally speaking, to the broadening of energy lev-
els in a ring and, as a consequence, to the decreasing of the
persistent current amplitude [16]. This effect requires ad-
ditional consideration. However, in the present paper we
neglect this effect; since, for the small enough mesoscopic
system; the level spacing exceeds the level broadening Γ
and the last can not change qualitatively the results.

We consider spinless electrons in a one-dimensional
ballistic ring within the framework of a Luttinger liquid
model [38]. The choice of such a model is due to two
reasons. Firstly, this model includes non-perturbatively
electron-electron interaction, which affects considerably
the persistent current at T > 0 [39]. Secondly, the charg-
ing energy (1) is similar to part of the Hamiltonian of
the Luttinger liquid [38] and also can be included non-
perturbatively.

In this model, the low-energy excitations around the
Fermi surface of the spinless interacting electron system
are expressed in terms of a scalar bosonic field ϕ(x, t) [38].
The Lagrangian of a Luttinger liquid LLL in a bosonic
form is [15,39]

LLL(x, t) = ~K

{
1

v

(
∂ϕ

∂t

)2

− v

(
∂ϕ

∂x

)2
}
. (2)

Here K and v are Haldane’s parameters [38] which de-
pend on the interelectron interaction in a ring. Within the
free-electron gas approach they are K = 0.5 and v = vF ,
where vF = ~kF /m∗ is the Fermi velocity (kF is the Fermi
wave number; m* is the electron effective mass). The spa-
tial derivative of the field ϕ determines the deviation of
the particle density ρ(x, t) from the mean density in the
ground state ρF = kF /π

ρ(x, t) = ρF + π−1/2∂ϕ/∂x. (3)

The Lagrangian corresponding to a charging energy (1) is

LC(t) = −
EC

L

(∫ L

0

dxρ(x, t) −N(Vg)

)2

. (4)

This Lagrangian is quadratic in ϕ and therefore the charg-
ing energy can be taken into account exactly.

At last, the Aharonov-Bohm interaction of electrons
in a ring with the magnetic flux Φ is described by the
Lagrangian LAB [15]

LAB(x, t) =
~
L
π1/2 ∂ϕ

∂t

(
kj +

2Φ

Φ0

)
, (5)

Where the topological number kj depends on the parity
of a number of particles in a ring Ne.

The partition function Z determines the free energy
F = −TLn(Z) and may be presented in the form of a
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path integral over the field ϕ(x, t) [15]

Z =

∫
Dϕ exp (−SE/~) . (6)

Here the Euclidean action is

SE = −

∫ L

0

dx

∫ β

0

dτ (LLL(x, τ) + LC(τ) + LAB(x, τ)) ,

(7)

where β = ~/T ; τ is the imaginary time.
The field ϕ(x, τ) obeys twisted boundary conditions

on a torus [15]

ϕ(x+ k1L, τ + k2β) = ϕ(x, τ) + k1π
1/2(2m+ kM )

+ k2π
1/2n. (8)

Here k1, k2, n, m are integers; kM is the topological num-
ber, describing the parity of the additional number (over
the number in the ground state) of particles in a ring. For
an isolated ring there is m = 0 and kM = 0. Otherwise
topological numbers kj and kM depend on the parity of
the number of particles in the ground state N0 = [ρFL]
(where [x] is the integer part of x) [15]

kj = kM , if N0 is odd

kj = 1; kM = 0 and kj = 0; kM = 1, if N0 is even. (9)

Considering Lagrangian L = LLL + LC + LAB is
quadratic in ϕ; therefore the extremal trajectories obey-
ing the boundary conditions (8) and determining the flux-
dependent part of the free energy ∆F (Φ) are linear func-
tions of both x and τ

ϕmn(x, τ) = π1/2

(
(2m+ kM )

x

L
+ n

τ

β

)
. (10)

3 Calculation of both the free energy
and the persistent current

By substituting (2–5, 10) into (6, 7) and performing the
summation over n and m (like the one in [15]) we obtain
the following expression for the free energy

∆F (Φ) = −TLn

∑
kj ,km

Θ3

(
kj

2
+

Φ

Φ0
, exp

(
−
T

T ∗

))

×Θ3

(
kM

2
+ δC , exp

(
−
π2T

4TC

)))
. (11)

Here the summation over kj and kM is performed with
respect to the topological constraint (9); T ∗ = ~v/(πKL)
is the crossover temperature for an isolated ring (Ne=
const.); Θ3(v, q) is the Jacobi Θ function [40]. The pa-
rameters TC and δC depend on the charging energy EC
and are

TC = TC0 +EC , (12)

where TC0 = π~Kv/L;

δC = EC N(Vg)/(2TC). (13)

Thus, the charging energy (1) results in the following.
Firstly, it renormalizes the characteristic temperature TC0

for arising of topological excitations in the spatial sector
[15], i.e. excitations which lead to a change of the num-
ber of electrons in a ring. At T � TC such excitations do
not arise, therefore the number of electrons in a ring is
conserved: Ne = const. In such a case a ring is effectively
isolated from a reservoir. In the limit of a large charg-
ing energy EC � T ∗ (the Coulomb blockade regime) the
condition Ne = const. is true throughout the tempera-
ture range T ≤ T ∗ where the persistent current exists.
Therefore, in this case the dependence of a current on the
temperature is like the one for an isolated ring [15].

We note, that for an appropriate experimental sit-
uation, namely, for the ballistic ring in the AlxGa1−x

As/GaAs semiconductor heterostructure [11], TC0 =
∆F /4 ≤ 0.2 K (within the free electron gas model). Thus,
if the capacitance C < 10−15 F then the charging energy
EC ≥ 1 K, and the last significantly renormalizes the
characteristic temperature TC0.

Secondly, the degeneracy of a charging energy (1) in
Ne: ∆E(Ne) = ∆E(Ne+1) affects considerably the free
energy (11) (and the persistent current). This degeneracy
condition can be satisfied by varying Vg (see Fig. 1). The
parameter δC (13) characterizes the deviation of the state
of a system from such a degeneracy state which occurs
at δC0 = 0.25. At {δC} = ±δC0 (where {x} is the frac-
tional part of x) the Coulomb blockade is lifted and a ring
couples to a reservoir.

3.1 The persistent current in points of a degeneracy
of the charging energy

As it follows from equation (11) at {δC}= ±δC0 the cur-
rent in a ring I = −∂F/∂Φ is

I(Φ) =
4π

Φ0
T

∞∑
q=1

(−1)q
sin (4πqΦ/Φ0)

sinh (4qT/T ∗)
· (14)

The persistent current (14) is periodic in Φ with a pe-
riod Φ0/2. This result is in agreement with reference [33]
where it was shown that the odd harmonics of a persistent
current vanish at Vg corresponding to the charge transfer
resonance.

3.2 Dependence of a persistent current on Vg

From both equation (11) and periodicity of the Θ3-
function it follows that the free energy (and the persistent
current) is periodic in Vg with a period of

∆(eVg) = 4TC . (15)

This period depends on the charging energy (see Eq. (12))
and corresponds to a change of a parameter δC by 1.
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At the same time both the parameter N and the number
of electrons in the ground state of a ring Ne are changed
by two: ∆N = ∆Ne = 2. We note, that the change of Ne
by 1 leads to an alteration of sign of a current (for the
spinless particles) pursuant to the parity effect [5,15,41].

It should be noted that the relation between ∆N and
∆(Vg) is determined by an effective capacitance C∗ which
includes the part depending on the density of states in a
ring [42,43]: 1/C∗ = 1/C + 1/C0, where C0 = e2/(2TC0).

Within the free electron gas model (TC0 = ∆F /4 with-
out the charging energy C →∞ (EC = 0) the dependence
on Vg with the period (15) corresponds to a well-known de-
pendence of the persistent current on the chemical poten-
tial µ of a reservoir with a period of ∆(eVg) = ∆(µ) = ∆F

[7,12]. At the same time, at C → 0(EC →∞) the charging
energy fixes the number of electrons in a ring and cancels
out such a dependence (at T � EC): ∆(eVg) → ∞. A
similar result was obtained previously in references [32,
43,44] at T = 0.

3.3 The persistent current away from the degeneracy
points

Further we consider the properties of a persistent current
in a Coulomb blockade regime. By definition we assume
that Ne is odd and −Φ0/2 < Φ < Φ0/2; −0.5 < δC < 0.5.
If Ne is even it is necessary to make the replacement Φ→
Φ+ Φ0/2 in the equations obtained below.

3.3.1 Low temperatures: T� T∗,TC

By making use of the asymptotic expression for the Θ3-
function we obtain the following expression for the persis-
tent current

I = −
π2

Φ0
T ∗
{

2
Φ

Φ0

−sgn(Φ)
B(π2T ∗, Φ/Φ0)B(4TC , δC)

1 +B(π2T ∗, Φ/Φ0)B(4TC , δC)

}
, (16)

where B(x, y) = exp
(
− x

4T (1− 4|y|)
)
. At the points δC =

±1/4 the odd harmonics of a current vanish (see Eq. (14)).
We designate Iodd = |I(Φ = Φ0/4)| and obtain from equa-
tion (16)

Iodd =
π2

2Φ0
T ∗A0(δC),

A0(δC) =

∣∣∣∣1− exp(−(1− 4|δC |)TC/T )

1 + exp(−(1− 4|δC |)TC/T )

∣∣∣∣ · (17)

The dependence Iodd(δC) is depicted in Figure 2. This
dependence consists of periodic sharp dips located at δC =
q/2+1/4 (where q is an integer). The width of a dip ∆1/2

is

∆1/2 = 0.55
T

TC
· (18)

Thus, at low temperatures the lift of the Coulomb block-
ade leads to the halving of a period of a dependence I(Φ)
only.

Fig. 2. Persistent current I as a function of the dimensionless
potential difference δC = eVg/(4TC) for several values of the
Coulomb energy 4TC/(π

2T ∗) = 1 (1); 10 (2); 30 (3) at both
the temperature T = π2T ∗/2 and the magnetic flux Φ = Φ0/4.

3.3.2 High temperatures: T� T∗

In this case the asymptotic expression for the current is

I = −
4π

Φ0
T exp

(
−
T

T ∗

)
A(δC)sin

(
2π

Φ

Φ0

)
,

A(δC) =
Θ3(δC , qC)−Θ3(δC − 1/2, qC)

Θ3(δC , qC) +Θ3(δC − 1/2, qC)
, (19)

where qC = exp
(
−π2T/(4TC)

)
. The function A(δC) de-

scribes the form of a Coulomb dips and is

A(δC) =

{
A0(δC), T � TC

2 exp
(
−π

2T
4TC

)
cos(2πδC), T � TC .

(20)

We note, that at high enough temperatures (T � TC) the
width of a dip does not depend on the temperature.

At high temperatures the amplitude of a current at
δC = ±1/4 (the Coulomb blockade is lifted) is exponen-
tially small compared to the one in the Coulomb blockade
regime. Since, in this case the current is

I(±δC0) = −
8π

Φ0
T exp

(
−

4T

T ∗

)
sin

(
4π

Φ

Φ0

)
. (21)

and I(δC0)/I(δC) ' exp(−3T/T ∗). While at low temper-
atures such a relation is about unity.

4 Conclusion

In the present paper, the influence of the Coulomb block-
ade on the persistent current in a one-dimensional ballistic
ring weakly coupled to an electron reservoir is considered.
Spinless electrons in a ring are described within the frame-
work of the Luttinger liquid model with respect to the
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electrostatic (charging) energy of a system in a geometri-
cal capacitance approach.

It is shown that the Coulomb energy EC = e2/(2C)
renormalizes the characteristic temperature TC0 for topo-
logical excitations arising in a spatial sector (i .e. exci-
tations which change the number of electrons in a ring):
TC = TC0+EC . In a limit EC � T such excitations do not
arise and a ring is effectively isolated from the reservoir
(Ne = const.)

At the certain values of Vg (see Fig. 1) the charging en-
ergy is degenerate in Ne therefore the Coulomb blockade
is lifted and a ring couples to a reservoir. At low tem-
peratures (T � T ∗) this leads to a halving of a period
of a dependence I(Φ). At the same time at high temper-
atures such a change of a period of oscillations I(Φ) is
accompanied by an exponential reduction of the current
amplitude.
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